Averting multi-qubit burst errors in surface code magic state factories

Tough Errors

Are No Match

arXiv:2405.00146

Jason D. Chadwick, Christopher Kang, Joshua Viszlai, Sophia Fuhui Lin, and Frederic T. Chong

CHICAGO | DEPARTMENT OF CHICAGO | COMPUTER SCIENCE

Background: surface code & magic state distillation

- Surface code: rectangular patch of physical qubits; multiqubit operations by merging and splitting patches
- Can fault-tolerantly perform Clifford operations, but need *T* gate to complete universal gate set
- *T* gate can be performed using a *magic state* $|T\rangle$
- Magic states of high fidelity are generated in *magic state factories* made of surface code tiles
- Magic state factories repeatedly perform *magic state distillation*
 - In this work, we focus on 15-to-1 distillation, which suppresses errors from order p to order p^3

Tough Errors

Are No Match

 Magic state distillation estimated to be 60-95% of total program cost (qubitcycles)

Background: multi-qubit burst errors

- Quantum error correction relies on sufficiently-small and unchanging physical error rates
- Physical error rates fluctuate significantly on current hardware in a variety of ways
- We focus on *multi-qubit burst errors*: many qubits experiencing an increase in error rate at the same time
- Common source of burst errors in superconducting hardware: cosmic ray impacts
 - Rate of rays can be reduced by shielding, but a single burst error could ruin an hours-long computation
 - Gap engineering can reduce direct sensitivity to radiation, but may come with fabrication tradeoffs and does not solve the whole problem

arXiv:2405.00146

M. McEwen et al., "Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits," *Nature Physics* (2022)

Noise model: Direct

Based on M. McEwen et al., "Resolving catastrophic error bursts from cosmic rays in large arrays of superconducting qubits," Nature Physics (2022).

- Model: ray reduces T_1 times in some radius r_{CRE} . Qubit error rates increase linearly towards center, with maximum reduction at the center of $f_{T_1}T_1^{init}$.
- Ray impacts are Poisson-distributed with rate Γ. Goes away after some time.

Noise model: TLS Scrambling

Based on C. D. Wilen et al., "Correlated charge noise and relaxation errors in superconducting qubits," Nature (2021) and T. Thorbeck et al., "Two-Level-System Dynamics in a Superconducting Qubit Due to Background Ionizing Radiation," PRX Quantum (2023).

- Model: ray scrambles T_1 times randomly within radius r_{CRE} .
- Ray impacts are Poisson-distributed with rate Γ. Requires active re-calibration to fix.

Baseline: Code expansion

Y. Suzuki et al., "Q3DE: A fault-tolerant quantum computer architecture for multi-bit burst errors by cosmic rays," MICRO 2022

- Allocate extra buffer space around each patch
 - With enough buffer space, can perform distillation in 5d_m steps instead of 6d_m
- Upon burst event, expand patch to increase error resilience

Baseline: Code expansion

- How much buffer space do we need? Depends on cosmic ray parameters
- For **Direct** model, d_{extra} depends on r_{CRE} and f_{T_1}
- For **Scrambling** model, we assume that added distance must be sufficient for worst-case set of broken qubits, so $d_{\text{extra}} = 2r_{CRE}$
- Assume *d*_{extra} must be doubled if there is a significant chance of two simultaneous events

Tough Errors

Are No Match

arXiv:2405.00146

• Depends on $\Gamma \times T_{\text{offline}}$

Baseline: Distributed

Q. Xu et al., "Distributed Quantum Error Correction for Chip-Level Catastrophic Errors," Phys. Rev. Letters (2022)

Tough Errors

Are No Match

- Encode each logical qubit in higher-level distributed code
- A detected burst error is treated as a heralded erasure error (assume entire patch is broken)
- A code with distance d qubits can tolerate d 1 simultaneous erasures
 - $\Gamma \times T_{\text{offline}}$ (probability of simultaneous events) determines required higher-level code

Solution: partially-offline magic state factories

- Magic state factories do not store long-term logical information; we do not have to protect them as carefully
- Idea: if a ray hits, just turn parts of the factory offline until recovery
- Re-mapping allows factory to operate even under more severe disruption

Normal operation

Tough Errors

τεαμ

Mitigating burst errors in magic state factories

COMPUTER SCIENCE

Comparison to baselines

CHICAGO

COMPUTER SCIENCE

Both baselines assume **instant** and **complete** detection of burst events, so we compare ۲ under that assumption

arXiv:2405.00146

Are No Match

Realistic detection of burst error events

- How quickly can we reliably detect burst errors when our only information is QEC error syndromes?
- Count error syndromes in spatiotemporal windows
- Define spatial windows of size $w_s \times w_s$
- For each spatial window, determine average baseline syndrome rate per stabilizer $p_{\text{syn},i}$
- Define temporal window size w_t and set a threshold number of counts $n_{\text{th},i}$ based on desired false positive rate (FPR)
- Each cycle, count syndromes in each window. If the count exceeds $n_{\text{th},i}$, a detection event is triggered
- Upon a detection event, turn off all qubits with radius $r_{\rm off}$ of the window for duration $T_{\rm offline}$

Burst error detection latency

Are No Match

CHICAGO

COMPUTER SCIENCE

Overhead of re-mapping under realistic detection

- Fixed temporal overhead: $\Gamma \times T_{\text{offline}} = 10^{-5}$
- Spatial overhead determined by *T* buffer size, which is set by reliable-detection latency
- **Direct** model: latency determined by f_{T_1} and r_{CRE}
 - Less than 2x overhead for most of the studied parameter space, but quickly grows for small and weak rays
- Scrambling model: latency determined by *r*_{CRE}

DEPARTMENT OF

COMPUTER SCIENCE

 Reliable detection is difficult; need to design for worst-case ray

Tough Errors

Are No Match

arXiv:2405.00146

• Overhead quickly grows as r_{CRE} decreases

Summary and discussion

- By tailoring burst error mitigation to magic state factories, we reduced mitigation overheads by 6.5-13.9× compared to previous methods
- Scales favorably with Γ (no time overhead until an event happens)
- Easily extends to different magic state factory layouts
 - Overhead factor will *decrease* with increasing factory size, while baseline overheads will *increase*
- Re-mapping factories may be useful for other error sources (fluctuating TLSs, calibration drift, etc.)
- Our method does not apply to logical program qubits still need a larger-overhead mitigation method for some parts of the processor
- Detection of weaker burst errors is more difficult than previously assumed we need to carefully study implications for compute qubits