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Abstract
Real-time decoding is a key ingredient in future fault-tolerant quan-
tum systems, yet many decoders are too slow to run in real time.
Prior work has shown that parallel window decoding schemes can
scalably meet throughput requirements in the presence of increas-
ing decoding times, given enough classical resources. However,
windowed decoding schemes require that some decoding tasks be
delayed until others have completed, which can be problematic dur-
ing time-sensitive operations such as T gate teleportation, leading
to suboptimal program runtimes. To alleviate this, we introduce
a speculative window decoding scheme. Taking inspiration from
branch prediction in classical computer architecture our decoder
utilizes a light-weight speculation step to predict data dependen-
cies between adjacent decoding windows, allowing multiple layers
of decoding tasks to be resolved simultaneously. Through a state-
of-the-art compilation pipeline and a detailed simulator, we find
that speculation reduces application runtimes by 40% on average
compared to prior parallel window decoders.

1 Introduction
Quantum computers are poised to deliver computational speedups
for problems intractable classically. It is known that many of these
problems, such as quantum chemistry and factoring, will require
fault-tolerant systems to translate noisy physical qubits into re-
silient logical qubits via quantum error correcting (QEC) codes. A
critical component in the realization of QEC is the decoder, which
must operate in real-time with the quantum device. Through classi-
cal algorithms acting on streams of parity check data, the decoder
effectively tracks the state of error on logical qubits. A leading
proposal for decoding a long-running quantum computation is to
decodewindows of parity check data as they are generated. Adjacent
windows must pass completed decoding data across window bound-
aries to create a global solution. In the first proposal from Dennis et
al. [19], known as sliding window decoding, data is passed forward
in time, creating sequentially-dependent decoding problems.

While a decoding system is necessary for enabling QEC, its
efficiency also has strong implications for the quantum computa-
tion. Terhal points out that if the rate of data production is higher
than the rate of data decoding, then the computation will experi-
ence an exponential slowdown [53] in the sliding window setting
due to an accumulating backlog of decoding tasks that all rely on
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Figure 1: (a) Decoding a lattice surgery T gate teleportation
(top left) using prior parallel window decoders (middle) and
using SWIPER (bottom). (b) Resulting decoding pipelines.
SWIPER improves decoding throughput with a lightweight
speculation step, allowing dependent windows to begin de-
coding earlier.

their predecessors. In response, research has broadly improved
decoder performance through a combination of algorithmic inno-
vations [17, 32, 56] and tailored optimizations [3, 44, 55]. When
addressing the backlog problem, however, it is important to clarify
decoder throughput versus decoder latency. Decoder throughput is
the rate at which information is decoded, whereas decoder latency
is the time taken to actively decode a single problem. Innovations
and optimizations in latency are important and they will, in turn, in-
crease throughput. However, as discussed both by Skoric et al. [51]
and Tan et al. [52] the decoding backlog is chiefly a problem of
throughput. The parallel window decoding strategies that they pro-
pose show how throughput requirements can be scalably met while
remaining agnostic to the underlying decoding latency. In parallel
window decoding, the direction of data movement between win-
dows is modified, partitioning windows into two alternating layers.
Windows in the same layer are independent and can therefore be
decoded in parallel. This removes long dependency chains inherent
to sliding window decoding, and as a result, given enough classical
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decoders to operate in parallel, the throughput of the decoding
system can be arbitrarily high, effectively resolving the backlog
problem.

Although prior parallel window decoding schemes successfully
meet throughput requirements, their impact on the time from when
a decoding window is generated to when it is decoded, known as
the reaction time, is sub-optimal. Ideally, the decoding of each win-
dow should begin as soon as the window is generated from the
device. However, as shown in the decoding pipelines of Figure 1b,
in prior implementations a window which depends on data from an
adjacent window cannot begin until the adjacent window is com-
plete, increasing the reaction time. If the time to decode a window
is 𝑡𝑤 , the reaction time becomes at least 2𝑡𝑤 . This is particularly
detrimental for “blocking" operations, such as non-Clifford gates
(e.g. T, CCZ), which require the system to be fully decoded before
the program can continue. An increase in reaction time in this con-
text causes additional idle operations to be inserted until decoding
is complete, slowing down the computation.

In this work we introduce SWIPER to reduce decoding reaction
time in window decoding schemes. SWIPER translates speculation
strategies commonly used in classical computer architectures to
the problem of window decoding, removing unnecessary idle time
waiting for data dependencies as shown in Figure 1.

To perform impactful speculation SWIPER leverages key insights:
1○ Since data dependencies between adjacent decoding windows
only exist along the window boundaries, they only constitute a frac-
tion of the total decoding problem. For example, at a code distance
𝑑 = 21, the boundary is only ∼ 1/21 = 4.8% of a window’s total
syndrome data. 2○ Error chains crossing the boundaries between
windows will be short and sparsely distributed in an overwhelming
majority of cases. In such cases, solving for data dependencies does
not need a full-fledged decoding process. With these insights in
mind SWIPER’s predictor solves the simpler problem of finding
short-weight matchings across the boundary, which can be done
much more efficiently than a full decoding of the window. This
tentative result can then be forwarded to the adjacent window,
allowing it to begin decoding. Importantly, this does not replace the
full decoder, which is still run lazily and verifies the speculation’s
correctness.

We find SWIPER provides a 40% reduction in fault-tolerant pro-
gram runtime compared to prior work, a critical improvement
given the high demand and time unit cost of quantum processors
which will need to be run on the order of hours to days for fault-
tolerant programs [9, 28]. Our results utilize our decoding simulator,
SWIPER-SIM, that allows simulation of window decoders for fault-
tolerant lattice surgery programs.

The main contributions of SWIPER are as follows:

• We introduce SWIPER, a new windowed decoder that lever-
ages a lightweight, FPGA-compatible predictor to improve
decoder reaction time by up to 50% compared to prior
parallel window decoders.

• We develop SWIPER-SIM, a round-level lattice surgery
decoding simulator, enabling program-level simulations
of parallel window decoding and allowing us to analyze
how decoding reaction time impacts overall benchmark
runtime.

• Using SWIPER-SIM, we discover variance in reaction time
for prior parallel window decoders based on the alignment
of T gates. We therefore introduce an aligned window sched-
ule to enforce proper alignment, improving reaction time
by up to 50% in alignment-limited settings.

• We study SWIPER under varying decoder latency and show
that for fixed runtime constraints, SWIPER relaxes
decoder latency requirements consistently by over
2 − 5×, enabling the development of more powerful and
accurate decoders.

• We evaluate SWIPER with realistic decoder parameters on
an assortment of representative benchmarks and demon-
strate consistent program runtime reductions of 40%
regardless of program size.

• We analyze the added classical overhead of SWIPER and pro-
vide a heuristic to determine how many classical decoders
to allocate for SWIPER. We find the benefits of SWIPER
come at the cost of a consistent 31% increase in the number
of concurrent decoders compared to prior parallel window
decoding.

2 Background
For in-depth background we refer to [21, 41, 46] for quantum com-
puting fundamentals and [24, 29] for QEC and stabilizer codes.
In this section, we give necessary background on the decoding
problem and prior windowed decoding approaches.

2.1 Surface Codes
The surface code, shown in Figure 2a, is a leading QEC code that fits
in a 2D gridwith nearest-neighbor connections. As a CSS code, it has
two sets of stabilizers (𝑍,𝑋 ) for decoding bit-flip errors and phase-
flip errors respectively, with each treated as a separate decoding
problem. Operations on the surface code are typically formulated
as lattice surgery [33], in which adjacent surface code patches are
merged and split to perform logical operations. These primitives
enable universal computation [23, 38] which has led to a growing
set of resource estimates for large quantum programs [9, 28].

2.2 Quantum Error Correction Decoding
We presume decoding takes place in the context of a long-running
set of surface code patches, each generating syndrome data from
their stabilizers. A decoding algorithm then operates on the syn-
drome data and aims to produce the most likely combination of
physical errors that explains the observed syndromes. If all pos-
sible errors flip either a pair of stabilizers or a single stabilizer,
as is the case with the surface code, we can use matching de-
coders [17, 25, 31]. In a matching decoder, we construct a decoding
graph where nodes are stabilizers and edges are error mechanisms,
such as data qubit errors and measurement errors. For the surface
code, this graph is a 3D lattice, shown in Figure 2b. Decoding then
consists of matching nodes with non-zero syndromes together to
find a viable explanation for the observed syndromes. If the overall
matching of syndromes is minimum-weight, it is a good approxi-
mation for the most likely error.
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Figure 2: (a) A d = 7 surface code patch with Z(X) stabilizers indicated by red(blue) faces. Drawn is the decoding graph for Z
stabilizers, with vertices of the graph indicating stabilizers and edges indicating error-prone data qubits. (b) Repeated rounds of
measuring stabilizers. The decoding graph is augmented to include a temporal dimension with new edges indicating possible
measurement errors. (c) A simplified view of decoding a surface code over time with one spatial dimension omitted. The
decoding graph is split into windows labeled 1-5 which are each treated as a separate decoding problem. (d) Decoding of
window 1 and its buffer region. Matchings in the window are committed and create Pauli frame updates while matchings
crossing into the buffer region create either artificial syndromes or removed syndromes at the boundary. Dependency bits on
the boundary are passed to window 2 and therefore constitute a data dependency between windows 1 and 2 (denoted by an
arrow). (e) Dependency graphs in a sliding window strategy and parallel window strategy. Arrows indicate the presence of a
buffer region belonging to the window at the source of the arrow. Also included are the same dependency graphs but when
using SWIPER. Speculated dependencies (double arrows) allow SWIPER to start decoding windows sooner, and full decoding
information is later used to verify the speculation (green check mark).

2.3 Blocking Operations
Decoding results can be tracked in software for some time using
Pauli frames [34, 47], omitting the need to apply immediate cor-
rective operations. However, non-Clifford gates in the program
constitute blocking operations which we cannot commute our Pauli
frame past. Instead, a Clifford correction based on up-to-date de-
coding results must be applied physically in order to continue past
the blocking operation [12]. For surface code computation, it is
common to use T as the only non-Clifford gate, applied via a T
gate teleportation circuit. In this case, the result of the measure-
ment operation in the teleportation circuit must be fully decoded
before the S gate correction can be applied [22, 53]. In T-based
computation, the delay between this measurement operation and
the conditional S correction is based on the decoder’s reaction time,
as shown in Figure 1. The presence of blocking operations therefore
necessitates real-time decoding. In order to progress our quantum
computation past blocking operations, a classical decoder must
operate in conjunction with the quantum device.

Key Insight: A delay in decoding a blocking operation
causes a delay in the execution of a whole quantum pro-
gram, so minimizing this reaction time is critical to ensure
fast program runtimes.

2.4 Decoding Windows
The latency of matching-based decoding algorithms grows polyno-
mially with the decoding graph size, which places a practical limit
on the size of a decoding problem. Instead of operating on the entire
decoding history prior to each non-Clifford gate, we can instead
operate on a pipeline of smallerwindows of decoding data, shown in
Figure 2c. In the original proposal, termed the overlapping recovery
method [19], each window has a commit region and a buffer region,
as shown in Figure 2d. In order to preserve the error-correcting
performance of the underlying code, the buffer region should span
∼ 𝑑 rounds, where 𝑑 is the code distance. The commit and buffer
regions together constitute a decoding task that is sent to the “inner”
decoder. After a window is decoded, the matchings in the commit
region are used to update the Pauli frame. Matchings that cross the
boundary between the commit region and the buffer region can
create "artificial" syndrome bits on the boundary that are passed to
the next window. Similarly, any matchings from the commit region
onto the boundary itself may remove a syndrome bit. The set of
syndrome bits on the boundary between the commit and buffer
regions therefore contain information that needs to be passed to
the next window. We will refer to these bits as the dependency bits.

In general, buffer regions are needed to pass information re-
lated to whether a potential error string could cross the boundary
between the commit regions of adjacent windows. A decoding
window can also have multiple buffer regions if it is adjacent to
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multiple windows in space and time, which may occur during lat-
tice surgery [37]. At a boundary between two adjacent windows, a
choice must be made for which window contains the buffer region
(and so must be decoded first). Its result is then passed to the other
window via the dependency bits. To capture this, we can define each
boundary in a decoding window’s commit region as a “source" or
“sink". Prior work has also referred to these as “rough" and “smooth"
boundaries, respectively. Source boundaries are followed by a buffer
region and pass information to the adjacent window, while sink
boundaries receive the passed information.

Key Insight: The choice of boundary types in each decod-
ing window enforces an ordering of decoding problems and
therefore has an important impact on the overall decoding
performance.

2.5 Sliding Window Approach
The overlapping recovery method [19] is an example of sliding
window decoding. Examining a single surface code over time, each
window always starts with a sink boundary and ends with a source
boundary, meaning data is always passed sequentially. As shown in
Figure 2e, these dependencies mean that each window cannot begin
decoding until the previous window is fully decoded. The decoding
throughput is therefore equivalent to the decoding latency, so in
order to avoid a backlog, the latency must be lower than the time
to generate a new window.

We note that, to our knowledge, prior work has not examined the
construction of spatially-sliding windows in the context of lattice
surgery operations. For completeness, however, we will assume a
sliding window decoder uses a similar, feed-forward approach for
windows sliding along a spatial dimension.

2.6 Parallel Window Approach
In parallel window decoding [37, 51, 52], windows alternate be-
tween having all source boundaries and all sink boundaries. This
minimizes the depth of the resulting dependency graph, shown in
Figure 2e. Windows in the first layer have no data dependencies
and can begin decoding immediately. Windows in the second layer
are also independent from each other and can begin decoding after
all of their dependencies are complete. For a long-running quantum
program, this occurs in a pipelined manner, allowing many separate
windows to be actively decoded in parallel. For spatially-parallel
windowing of lattice surgery operations, an additional window
type is needed that has a mix of source and sink boundaries [37].

3 Motivation
3.1 Decoding Latency
The latency of an inner decoder is not necessarily fixed, and will
generally vary with both the code distance and the specific decoding
task (set of syndromes) at hand. Due to the complexity of decoding
algorithms, in many cases the decoding latency will exceed the
time to generate a decoding window. Regimes exist where this is
avoided, particularly smaller code distances with hardware-based
implementations [6, 15, 39], however, in all of these the latency
scales with the code distance 𝑑 with the highest distance achieved
being 𝑑 = 23, still below distances expected for large-scale appli-
cations like factoring [28]. In Figure 3 we highlight this point by

Figure 3: PyMatching decoding latency distributions for vary-
ing code distances and window sizes. Latencies are relative
to a logical cycle consisting of d measurement rounds where
each measurement round is assumed to take 1 µs. Lower right:
example of a 3d3 decoding volume in the style of Figure 2c.

plotting decoding latencies using PyMatching, a state-of-the-art
software decoder [31], and Stim [26], a detailed surface code sim-
ulator, with an assumed syndrome measurement round time of
1 µs based on recent experiments [2] and a physical error rate of
𝑝 = 10−3. We can see latency scales not only with code distance but
also the volume of the window, which varies with the number of
buffer regions as discussed in Section 2.4. Furthermore, this issue of
latency is not unique to matching-based decoders. Higher accuracy
decoders [7, 50] and decoders for qLDPC codes [42] all struggle
with decoding latency and therefore necessitate the use of an outer
parallel window scheme to avoid a backlog. As such, we expect
parallel window decoding to be a key ingredient in fault-tolerant
quantum systems going forward.

3.2 Reaction Time
We assume a quantum program running on a surface-code-based
system will be decomposed into Clifford+T gates, where T gates
constitute the only blocking operation. This is the leading approach
for compiling to surface codes, with some synthesis strategies even
omitting Clifford gates entirely [38]. Since T gates are blocking
operations, the reaction time of the decoder will determine how
quickly T gates can be applied, and as a result, the overall program
latency.

In parallel window decoding, the reaction time of a decoding
window is influenced by 1○ the latency of the inner decoder run
on each window and 2○ delays caused by waiting for window
dependencies. In this work, we address 2○, improving parallel win-
dow decoding in an inner-decoder-agnostic approach. With prior
parallel windowing methods, 2○ constrains the reaction time for
windows with dependencies to be at least 2𝑡𝑤 , where 𝑡𝑤 is the
decoding latency. This is because a window with a dependency
must wait until that dependency is completely finished decoding
before it can begin decoding. However, we argue this is not a funda-
mental constraint. In this work, we find that dependencies can be
effectively predicted before the inner decoder is complete. SWIPER
uses these speculations to reduce the impact of 2○.
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Key Insight: If the dependencies between windows can
be resolved faster than the decoding latency, a window can
begin decoding before its predecessors are complete.

4 SWIPER: Speculative Window Decoding
In this section we introduce SWIPER, a window decoder that in-
cludes a light-weight prediction step to speculate data dependencies
between adjacent decoding windows. We organize this section as
follows: in Section 4.1 we describe how SWIPER changes the reac-
tion time of T gates, in Section 4.2 we outline a scalable predictor for
surface code decoding, and in Section 4.3 we describe the classical
decoder resources required by SWIPER. Then in Section 5 we de-
scribe the simulation methodology we use and present benchmark
evaluations comparing SWIPER to prior, speculation-free window
decoders.

4.1 T Gate Teleportation
Performing the T gate in the surface code requires the use of a T
gate teleportation circuit, shown in Figure 1. The S gate correction
occurs 50% of the time depending on the preceding measurement
outcomes. Determining whether 𝑆 should be applied is blocking
and requires the decoder to be up-to-date through the 𝑍𝑍 merge
operation (dark gray). As described in Figure 2e parallel window
decoding requires that certain windows be dependent on future
windows. This is seen in Figure 1 where windows 2 and 4 must
wait to begin decoding until window 3 is completed at time 𝑡 + 𝑡𝑤 .
In prior work this is unavoidable, however in SWIPER we speculate
the dependencies, allowing windows 2 and 4 to begin decoding
while window 3 is still decoding. After window 3 is complete, we
then verify the speculations were correct. The resulting reaction
time is reduced, allowing the program to continue past the blocking
operation earlier than with prior work. Importantly, if we find that
any speculations were incorrect upon completing window 3, the
reaction time is still no worse than in prior work, because we can
restart windows 2 and 4 at time 𝑡 + 𝑡𝑤 .

Key Insight: Window dependency speculation will never
worsen reaction times compared to baseline methods and
will generally improve them significantly.

4.2 Predictor Design
In designing a predictor, we leverage the commonly-used fact that
the majority of decoding problems will be simple with sparse, low-
weight error chains [3, 44, 55]. Since most error chains are low-
weight, we can predict these dependencies by looking for small,
simple patterns along the boundary.

We develop our predictor design using an iterative approach.
Here we describe how we iterate on a simple, 1-step predictor
to create a 3-step predictor that handles the majority of common
syndrome patterns that create data dependencies. We define the
overall speculation accuracy as the rate at which all dependency
bits along a boundary are predicted correctly; any single mistake
constitutes an incorrect speculation.

4.2.1 1-Step Predictor. In the 1-step predictor, we only look at
single errors (edges in the decoding graph) that cross the boundary
between a commit region and a buffer region. For each of these
errors, the predictor checks their syndrome bits. If both bits are 1,
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it predicts that the error occurred and creates a dependency. We
note that all errors can check their syndrome bits simultaneously,
ensuring a low-latency, constant runtime prediction. Furthermore,
for a distance 𝑑 surface code, the number of errors we need to check
is only 𝑂 (𝑑2), which can be efficiently implemented in hardware
logic.

In Figure 4 we plot the accuracy of the 1-step predictor as well
as a breakdown of misprediction cases. A false positive is when a
matching crossing the boundary was predicted but did not actually
exist and a false negative is when a matching that did cross the
boundary was not predicted. We generate circuit-level surface code
windows at a physical qubit error rate of 0.1% using Stim [26] and
we use PyMatching [32] as the reference decoder to determine
misprediction. Despite its simplicity, the 1-step predictor can still
reach > 70% accuracy for all code distances we consider.

The 1-step predictor can be further improved by studying com-
mon failure cases. In Figure 5 we describe the most common cases
the 1-step predictor encounters. While all failure cases are equally
damaging and constitute a misprediction, from Figure 4 we find
that false positives are the most frequent mistakes made by the
1-step predictor.

4.2.2 2-Step Predictor. To address common false positives in the
1-step predictor, we propose an improved, 2-step predictor. The
intuition from the 2-step predictor comes from the fact that after
step 1 we may have clusters of errors that need to be pruned to
create a minimal matching. We therefore design step 2 similarly to
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the peeling decoder introduced in [18] wherewe prioritizematching
syndrome bits with the fewest viable matches, akin to a leaf node.

We increase the set of errors considered to include all errors at
most a distance of 2 from the boundary. In the first step, like the
1-step predictor, each error checks if both its syndrome bits are 1.
If so, instead of declaring a match, they increment both syndrome
bits by 1. In the second step, each error that believed itself a match
is assigned to a bin based on the sum of its adjacent syndrome bits.
Then in increasing bin order, each error checks if its syndrome bits
are nonzero. If so, it declares itself a match and sets both syndrome
bits to zero. Importantly, the number of bins is limited by the degree
of vertices in the decoding graph which for the surface code is
constant due to its constant, weight-4 parity checks. The runtime of
this step is therefore independent of the code distance. In Figure 4
we find that the 2-step predictor resolves nearly all the false positive
cases mispredicted by the 1-step predictor.

4.2.3 3-Step Predictor. Finally, to address common false negative
cases, we introduce a third step to the 2-step predictor. Offline, we
can precompute the pairs of syndrome bits that can be matched
by a weight-2 error chain crossing the boundary. Then, after the 2-
step predictor determines its matches, we check each precomputed
pair to see whether its syndrome bits are both 1 in the decoding
graph, and if so, we declare a match. Similar to the 1-step predictor,
these checks can all occur in parallel along the boundary ensuring
a constant runtime with the number of such checks as𝑂 (𝑑2). Since
this occurs after the 2-step predictor, we expect all simple, weight
1 error chains to already be matched. We summarize the logic of
this final, 3-step predictor in Figure 6.

In Figure 4 we can see the 3-step predictor reduces the amount
of false negatives mispredicted by the 1 and 2-step predictors. As a
result, we reach a prediction accuracy of > 90% for all code distances
we simulate.
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Key Insight: The 3-step predictor runs in time 𝑂 (1) since
the number of unique bins in step 2 depends on the parity
check weight, which is constant for the surface code.

4.2.4 Hardware Implementation. To validate the behavior of the
3-step predictor, we implemented the algorithm on FPGA hardware.
The FPGA environment was chosen as FPGAs have seen value as
platforms for full QEC decoders [6, 39]. We performed a behav-
ioral simulation of the 3-step predictor on AMD’s Vivado Design
Suite [4] to verify the 𝑂 (1) runtime for 𝑑 = 13 through 𝑑 = 27.
The time taken for the predictor implementation is always 60ns,
demonstrating that it is constant with respect to distance. Since the
3-step predictor only considers 𝑂 (𝑑2) syndrome bits compared to
the full decoding volume of𝑂 (𝑑3), we also expect area costs to scale
favorably compared to the full decoder. This separation increases
as 𝑑 increases. For example, at the smallest window volume of 2𝑑3,
with 𝑑 = 13 the predictor examines ∼ 15% of the total syndrome
data whereas with 𝑑 = 25 the predictor only examines ∼ 8% of the
total syndrome data.

4.3 Classical Resources
Parallel window decoding will need access to many classical de-
coders operating in parallel to keep up with throughput demands.
Compared to prior, speculation-free schemes, SWIPER exhibits
an increased demand on the number of concurrent decoders, as
SWIPER collapses the dependency structure of windows. Given
that parallel window decoding relaxes latency requirements, for
this work we assume decoders exist out-of-fridge and are much
less costly than the quantum device itself. As such, we believe an
increase in classical compute to reduce the required amount of quan-
tum compute is a beneficial trade. However, here we study how to
minimize the required classical costs of SWIPER. Particularly, an
incorrect speculation can cause wasted classical computation as it
requires restarting some decoding tasks that were based on flawed
dependency bits. SWIPER mitigates this cost through an optimistic
speculation strategy.
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Figure 8: Estimating classical decoder costs of the three differ-
ent proposed speculation strategies. All values are averaged
over 10,000 shots. The specific case simulated is 100 windows
in a “zig-zag” shape (right) using a sliding schedule with spec-
ulation. In the breakdown, “valid compute” indicates com-
pute that finished andwas correct, whereas “wasted compute”
indicates compute that was restarted early or found to be
incorrect.

4.3.1 Handling Mispredictions. Awaiting decoding window begins
decoding after its incoming dependencies have passed boundary
speculations to it. Once each dependency is fully decoded, however,
we must verify if the speculation was correct by comparing the
dependency bits produced by the predictor and by the full decoder.
In the event the predictor was incorrect, we have a misprediction. A
misprediction means that the relevant decoding window operated
on incorrect syndrome data, leading to an invalid solution; the de-
coding task must be restarted using correct dependency bits. We
call this window poisoned. However, the effect of a misprediction
does not necessarily stop here. Incorrect matching of syndromes
along one boundary can lead to incorrect matching of other syn-
dromes on other boundaries, so the effects of a misprediction may
propagate further in the window dependency graph. This raises an
important question: which other decoding windows are unreliable
in the event of a misprediction?

Given a dependency graph with a poisoned node, shown in Fig-
ure 7, the pessimistic speculation strategy (left) restarts all descen-
dants that already began decoding. If the poisoned root significantly
increases the chances of these descendants being poisoned, this
strategy is effective, as it halts likely-incorrect decoding tasks ear-
lier and avoids needless computation. On the other hand, if the
descendants’ chances of success are not significantly affected, this
is a poor strategy, as it throws away valid, in-progress decoding
tasks that are likely to be correct. As discussed in Section 4.2, we
expect most decoding problems to be sparse with low-weight error
chains. In this regime, we do not expect a change in syndrome

bits on one boundary of a window to change a result on a differ-
ent boundary. An optimistic speculation strategy (Figure 7, right)
therefore only restarts the poisoned node itself.

To evaluate this intuition, we use Stim and PyMatching to sim-
ulate the surface code at a physical qubit error rate of 0.1% and
estimate the conditional probability of a misprediction of a source
boundary given a received misprediction on a separate sink bound-
ary. We find no change in accuracy if the two boundaries are not
adjacent (e.g. one temporal boundary to the next), and a ≈ 4% de-
crease in accuracy if the two boundaries are adjacent (e.g. one spatial
boundary and one temporal boundary). Given this asymmetry, we
propose an intermediate strategy that restarts the poisoned node
and any windows that used a prediction on an adjacent boundary
to the misprediction, shown in Figure 7 (center).

In Figure 8, we show classical costs for decoding a sequence
of 100 windows with speculation failures using the three specula-
tion strategies detailed above. To study a regime where we expect
the most variation between the three strategies, we use a sliding
window schedule with a “zig-zag” dependency structure such that
successive boundaries are always adjacent. We use a prediction
accuracy of 90% with a reduced accuracy of 86% for boundaries
adjacent to a misprediction. If the decode time is comparable to the
time to generate a window (1 cycle) we see little variance, since
the depth of the active dependency tree is small. However, at large
decode times more similar to what we observed in Figure 3, we
see that the pessimistic strategy unnecessarily restarts more win-
dows, wasting classical compute. In all cases, we find the optimistic
strategy performs the best, which we attribute to the high pre-
diction accuracy and minimal downstream effects in the case of
mispredictions.

5 Methodology
To evaluate the impact of SWIPER on the overall program latency,
we perform benchmark evaluations using state-of-the-art compila-
tion techniques. To do so, we develop our own simulator, SWIPER-
SIM, to evaluate window decoders given lattice surgery programs.

5.1 Simulation Software
Figure 9 gives an overview of the procedure by which we compile
and evaluate benchmark applications. We source relevant bench-
marks for the fault-tolerant regime from recent repositories [30,
36, 43, 49] which can be compiled down to Clifford+RZ gates in
OpenQASM [14] using Cirq [20]. We then use Gridsynth [48] to
approximate RZ gates as a sequence of H, S, and T gates with a
precision of 10−10. We feed the resulting Clifford+T circuit into
the Lattice Surgery Compiler [35] to create a mapped and routed
lattice surgery program using the Edge-Disjoint Paths Compilation
(EDPC) surface code layout [8].

SWIPER-SIM takes in a compiled lattice surgery program and
performs a round-level simulation of syndrome generation, win-
dowing, and decoding (the final step in Figure 9). Based on the lattice
surgery program, the DeviceManager generates a set of syndrome
rounds every 1 µs (based on recent experimental timing [2]) for all
currently-active surface code patches. These syndrome rounds are
collected by the WindowBuilder and assembled into windows by
the WindowManager, with source/sink boundaries decided based
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Figure 9: The pipeline used to evaluate high-level benchmark
programs with different window decoders. Right: details of
SWIPER-SIM and its runtime versus program size on a single
core of an Intel Xeon Gold 6248R processor.

Figure 10: SWIPER-SIM program traces for a 15-to-1 magic
state distillation in a distance-7 code using the construction
from [23] (Fig. 17). Time advances vertically, and each hori-
zontal slice represents a batch of syndrome data (colored by
instruction type). Decoding time is fixed to be the same as
the time to generate 2d rounds, about twice the window gen-
eration rate. Device traces are shown for (a) baseline parallel
window method (15.1d QEC rounds) and (b) SWIPER aligned
window (11.3d QEC rounds, a 25% improvement).

on a window decoding strategy (e.g. sliding, parallel). Completed
windows are sent to the DecoderManager, which initiates spec-
ulation and decoding tasks when the relevant dependencies are
satisfied, manages classical compute resources, and handles mis-
predictions. Speculation uses the optimistic strategy described in
Section 4.3.1 to handle mispredictions. For blocking instructions,
the DeviceManager delays the conditional instruction until the De-
coderManager signals that it has fully decoded (and verified) the
instruction history up to and including the blocking operation.

By simulating at the granularity of rounds, windows do not
necessarily need to align with instructions. As a result, idling while
a blocking T gate is being decoded can complete as soon as possible,

Figure 11: Sensitivity of reaction time to decoding latency and
speculation accuracy. Speculation accuracy of 0% corresponds
to baseline (no speculation) decoding. Decoder latency is
tdec (v) = rv/d2 rounds, where v is the volume of the decoding
problem (in units of d3) and the relative latency factor r is
varied along the x axis. Equivalent latency factors extracted
from linear fits to PyMatching latency data (Figure 3) are
shown along the x axis. Right: simulator trace of repeated T
gates on an idling logical qubit. A similar experiment with
1000 T gates was used to collect the data in this figure.

even if the reaction time is not a multiple of the window size. As
an example, Figure 10 shows a spacetime program trace generated
by SWIPER-SIM for a hand-specified lattice surgery program for
15-to-1 magic state distillation [10, 23, 45]. We can compare prior
work (Figure 10a) with SWIPER (Figure 10b) to see the reduction
in reaction time for blocking operations when using speculation.
Slices are colored by instruction type. Y basis measurement and S
gates are modeled according to [27].

5.2 Studying reaction times with SWIPER
In Figure 11 we plot the sensitivity of SWIPER to decoding latency
and speculation accuracy. Decoding latency is proportional to win-
dow volume with relative factor 𝑟 . For sliding windows of size 2𝑑3
(𝑑3 commit, 𝑑3 buffer), 𝑟 = 0.5 corresponds to a latency of 𝑑 rounds,
matching the window generation rate; as expected, we see that
the backlog problem for default sliding window decoding (yellow
dashed line) therefore begins when 𝑟 > 0.5, where the reaction
time begins to grow exponentially with each successive blocking
operation. SWIPER mitigates this problem with speculation, but
we find reaction time for sliding windows is particularly sensitive
to speculation accuracy. This is due to the depth of the dependency
tree, which is unbounded in sliding window decoding.

5.2.1 T Gate Alignment. We also see that at small decoding laten-
cies the sliding window strategy outperforms the parallel window
strategy by up to 50%. We can explain this in part by noticing that,
in parallel window decoding, the type of window a T gate aligns
with affects its reaction time. As shown in the bottom example of
Figure 12, if the merge operation in a T gate teleportation ends
with a sink boundary, the reaction time can be further delayed by
the time to generate the source boundary’s window in the future.
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Figure 12: Comparing awell-aligned T gate (top) and a poorly-
aligned T gate (bottom).

In this specific example, since window 3 depends on window 4, it
must wait for window 4 to be generated before it can even begin
decoding. However, if instead the merge ends in a source boundary,
as shown with window 8 in the top example, the soonest window 8
can begin decoding is after its buffer region is generated, which is
only 𝑑 rounds.

More generally, we conclude that a blocking operation should al-
ways be “aligned” (have a future-facing source boundary) to ensure
a minimal reaction time. Since a sliding window schedule always
ends with source boundaries, it is always aligned. However the
sliding window schedule is much more sensitive to speculation ac-
curacy leaving it vulnerable to the backlog problem. To address this,
we also introduce an aligned window strategy, which is a parallel
window strategy with forced alignment of blocking operations.

Key Insight: Using SWIPER-SIM, we find that parallel win-
dow decoders suffer from dependency-induced delays, as
already discussed, but also alignment-induced delays.

5.2.2 SWIPER’s effect on reaction times. In Figure 11, we find the
aligned strategy retains the misprediction resiliency of parallel
window decoding while reducing reaction time. We see that for
short decoding latency, the aligned strategy yields over 50% shorter
reaction times than the parallel strategy. As decoder latency in-
creases, parallel and aligned strategies become increasingly similar;
reaction time in this regime is dominated by waiting for dependen-
cies to resolve rather than generating windows. For both aligned
and parallel, we see that SWIPER can reduce reaction times by
roughly 50% when decoding latency is long; we attribute this to
SWIPER effectively “flattening” the two-layer dependency struc-
ture of the parallel window strategy. A speculation accuracy to 90%
is sufficient to get most of the benefit of SWIPER. Finally, we see
that if the speculation is reliable enough, sliding window decoding
performs best at all decoder latencies, which we attribute to the
use of smaller window sizes (typically 2𝑑3, compared to the 3𝑑3-
volume windows in parallel window decoding) leading to lower
inner decoder latencies.

5.2.3 Relaxing Inner Decoder Latency. We can also analyze the data
from Figure 11 from a different angle: in a setting with a fixed run-
time budget, SWIPER allows for significantly longer inner decoder

latencies. For fixed reaction time values, we compare high-accuracy
SWIPER to the default parallel window scheme and find that spec-
ulated aligned and sliding schemes allow upwards of 5× increased
latency for reaction times near 100 µs and all three (parallel, aligned,
and sliding) speculated methods allow over 2× increased latency in
the limit of large reaction time (500 µs+). Again, we can understand
this limit by remembering that SWIPER collapses the two-layer
dependency structure of parallel windows.

This relaxation in decoder latency could be translated to an in-
crease in program fidelity by using recurrent, transformer-based
decoders [7], tensor network decoders [1, 13], or ensemble de-
coders [50] which have demonstrated improvements to decoder
accuracy at the cost of decoder latency.

5.3 Benchmark Simulation
To further evaluate the efficacy of SWIPER, we select a suite of
fault-tolerant benchmark applications and use the methodology de-
scribed in Section 5.1 to simulate the program runtime when using
different window decoding strategies. To evaluate at scales expected
for large, fault-tolerant applications we consider a physical error
rate of 𝑝 = 10−3 and code distance 𝑑 = 21, which corresponds to
logical error rates below 10−12. This is often referred to as the “ter-
aquop regime” where a trillion logical operations can be executed.
We again assume that each QEC syndrome round takes 1 µs and we
sample decoding latencies from the distributions shown in Figure 3,
rounding up if the window volume is not an integer multiple of 𝑑3.
Speculation is assumed to take 1 µs with an accuracy of 90% based
on our results in Section 4.2.

5.3.1 Selected Benchmarks. Table 1 summarizes the lattice surgery
program benchmarks we simulate. We identify three “microbench-
marks” (𝜇Benchmarks) which are small, consistently-used primitive
operations in the fault-tolerant domain whose performance can be
extrapolated to estimate that of programs beyond what we include
in Table 1.

For the other benchmarks, we include exact quantum phase
estimation on 5 qubits due to its presence as a common subroutine
in many quantum algorithms. We include Quantum Read Only
Memory (QROM) with 15 data bits and 15 select bits to represent
data I/O in many quantum algorithms. Grover’s algorithm on 5
qubits is chosen to represent data search applications. We include
block encoding for Carleman linearizationwith 4 truncation steps to
represent quantum algorithms for nonlinear differential equations.
We include the Quantum Fourier Transform (QFT) on 10 qubits and
an 8-bit adder to represent subroutines in factoring applications.
Finally, simulating the Fermi Hubbard model on a 4 × 4 lattice and
performing qubitized ground-state energy estimation of 𝐻2 [5] are
included to represent chemistry applications.

5.3.2 Results. Figure 13 shows the program runtimes for the se-
lected benchmarks relative to the baseline parallel window method.
Due to the uncertainty in runtime for smaller benchmarks (dis-
cussed in the following subsection), we report aggregate results
for benchmarks with more than 1000 T gates: without SWIPER,
using the aligned scheduling method achieves 4.3% to 8.5% (ge-
omean 5.8%) reduction in runtime compared to parallel window.
With SWIPER, all three scheduling methods (parallel, aligned, and
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Benchmark Short Name Space footprint Compiled # T’s Source Domain
Toffoli toffoli 9 7 [41] 𝜇Benchmark
Magic State Distillation msd_15to1 32 15 [23] Resources, 𝜇Benchmark
RZ(𝜙), 𝜖 = 10−10 rz 4 100 [48] 𝜇Benchmark
Quantum Read Only Memory qrom 153 48 [30] Data I/O
8-bit Adder adder_8bit 111 112 [36] Factoring subroutine
Carleman Encoding carleman 264 394 [49] ODE
H2 Qubitized Walk Operator H2_molecule 92 3084 [49] Chemistry
Fermi Hubbard 4 × 4 Lattice fermi_hubbard 225 3898 [49] Chemistry
Quantum Phase Estimation qpe 85 11378 [43] Common subroutine
Quantum Fourier Transform qft 86 11484 [43] Factoring subroutine
Grover’s grover 34 13577 [43] Data Search
Table 1: Selected benchmark applications. Space footprint is the number of 𝑑 × 𝑑 surface code patches used.
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Figure 13: Top: Program runtime for selected benchmarks under different window scheduling methods, with and without
SWIPER. Classical processor resources are unlimited. Vertical black lines indicate standard deviation over 10 randomized trials
for smaller benchmarks. Bottom: Relative runtimes normalized to default parallel window runtime.

sliding) improve significantly. SWIPER-parallel achieves 31.8% to
33.9% (geomean 32.7%) reduction in runtimes, SWIPER-aligned
achieves 36.9% to 39.2% (geomean 38.1%) reduction in runtimes,
and SWIPER-sliding achieves 40.4% to 43.6% (geomean 41.4%) reduc-
tion in runtimes compared to baseline parallel window. We observe
that the QROM and Carleman encoding benchmarks exhibit slightly
less performance improvement compared to the other benchmarks;
we conclude that this is because these two benchmarks have a lower
fraction of T instructions (∼40% compared to ∼70-80% for the other
benchmarks), so the benefit of reducing reaction time is slightly
less impactful.

5.3.3 Runtime uncertainty and extrapolation. It’s important to note
that there is uncertainty in the runtime of the benchmark programs
we simulate. Randomness is introduced in two ways in our simu-
lations: 1○ conditional S gates, which are applied 50% of the time
after a T gate teleportation, and 2○ mispredictions in SWIPER. To
capture this uncertainty, we run 10 trials of each benchmark with

fewer than 3,000 T gates. For these benchmarks, the runtimes in
Figure 13 have error bars showing the standard deviation of results.
In Figure 14, we show that this standard deviation (relative to mean)
decreases as T count increases while the relative improvement over
the baseline remains constant. We therefore claim that, in the limit
of the large T counts we expect in future fault-tolerant algorithms,
SWIPER will show performance improvements similar to those in
the larger benchmarks in our study. We also note that the amount
of uncertainty does not appear to depend strongly on the window
strategy being used, indicating that most of the variation stems
from 1○ (the conditional S gate) rather than 2○ (mispredictions in
SWIPER). This can be explained by the fact that conditional S gates
occurs with 50% probability whereas mispredictions occur only
with 10% probability.

Looking forward, because SWIPER’s main benefit is reducing
the reaction time for T gates, which are typically the main cost of a
program [9, 38], the magnitude of runtime improvement is broadly
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Figure 14: Top: Performance improvement of SWIPER ap-
pears to be consistent across benchmarks size. Bottom: Un-
certainty in runtime, showing that relative uncertainty de-
creases for larger programs.

independent of program size, so we expect we would see similar
improvements for full application-level benchmarks.

5.3.4 Limiting classical processors. While in the majority of this
work we assume the number of classical decoders is not limited, in
practice we must instantiate a finite number of decoders to imple-
ment SWIPER on real hardware. As speculation failures occur prob-
abilistically, we cannot know the exact optimal number of classical
decoding processors to provision. We suggest a simple heuristic to
provision an appropriate number of processors: we simulate the
program of interest in the perfect-speculation, unlimited-processor
case and track 𝑃max (maximum number of parallel processes) and
𝑃mean (mean number of parallel processes) over all rounds of the
program. We then allocate 𝑃max+𝜖spec𝑃mean processors to SWIPER,
where 𝜖spec is the probability of a misprediction (10% in our evalua-
tion). The intuition for this heuristic is that 𝑃max is the number of
processors required by the program and 𝜖spec𝑃mean is an expected
number of processors needed to handle mispredicted windows that
are being redecoded.

We do not observe any significant variation in simulated program
runtime with this limit imposed. Figure 15 compares the unlimited-
processor usage to this auto-set processor limit, showing that the
heuristic is able to accurately estimate the true number of required
processors without bottlenecking the decoder, setting the processor
limit very near to the actual maximum required. A linear fit to
this data also reveals that SWIPER uses approximately 31% more
simultaneous decoding processors than the default method. We
argue that this extra cost is worth the significant improvement in
quantum program runtime, as classical hardware is inexpensive
compared to a large-scale quantum computer.

6 Related Work
While QEC decoding has broadly been an active area of research [11,
16, 40, 54], related work on decoder performance has largely fo-
cused on achieving a decoding latency within 1 µs as a requirement
for real-time decoding, motivated by the fact that superconduct-
ing systems generate a round of syndrome measurements every ∼
1 µs [2]. LILLIPUT [15] proposes a look-up table that can decode
up to 𝑑 = 5 within 1 µs. Astrea [55] extends this to 𝑑 = 9 in 1 µs via
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Figure 15: Comparing classical compute cost between base-
line method and SWIPER.

brute-force searching low-Hamming-weight bitstrings. Clique [44]
is a lightweight pre-decoder that specifically tackles isolated errors
and bears some resemblance to the 1-Step Predictor proposed in
this work. More recently, Promatch [3] proposes an adaptive pre-
decoding step to lift this limit to 𝑑 = 13 within 1 µs in regimes of
low physical error rate (0.01%). Barber et al. [6] design a Collision
Clustering decoder and an FPGA implementation that can reach
𝑑 = 23 in under 1 µs. Helios [39] demonstrates an impressive imple-
mentation of the Union-Find decoder [17] on an FPGA and achieves
latencies of 11.5 ns for one round of a 𝑑 = 21 surface code under a
simpler, phenomenological error model. While all of these works
improve decoding latencies, the advent of parallel window decoders
presents a scalable “outer-level” solution to real-time decoding that
removes 1 µs as a hard requirement for decoding latency. By relax-
ing the constraints on the inner decoder, this also enables decoders
which historically have had prohibitive latencies, such as higher
accuracy decoders [7, 50] and decoders for qLDPC codes [42].

Prior work specifically addressing parallel window decoders
is still limited. The original proposals for parallel window decod-
ing [51, 52], work analyzing their performance for spatial windows
during lattice surgery [37], and work extending this to transversal
gate computation for high-connectivity systems [57] all assume
windows with dependencies wait until their dependencies are com-
pletely decoded. SWIPER, however, proposes key differences. Our
novel introduction of a speculation step allows us to reduce the
reaction time of T gates and in turn fault-tolerant program run-
times by 40%. We are also the first work to simulate general lattice
surgery programs in the context of window decoding.

7 Conclusion and Future Work
In this work we proposed SWIPER, a parallel window decoder that
introduces a light-weight speculation step to resolve data depen-
dencies between adajcent surface code decoding windows. There
are a number of interesting directions for future work to explore.
While in this work we design an independent predictor, exploring
whether iterative decoding algorithms [32, 56] could admit a high-
quality prediction from an intermediate state could further reduce
classical resources. Additionally, SWIPER focuses on surface codes,
but parallel window decoding is also compatible with a broader set
of codes, including qLDPC codes [51]. Designing a predictor in this
setting could further extend the benefits of SWIPER.

11



Author contributions
J.V. conceived of the idea, designed the 3-step predictor, designed
the aligned scheduling strategy, and wrote the compilation pipeline.
J.D.C. developed SWIPER-SIM and ran benchmark simulations. S.J.
performed FPGA evaluations of the predictor. G.S.R., Y.L., and F.T.C.
advised the project. All authors revised the manuscript.

Acknowledgements
We thank Pranav Gokhale, Kevin Gui, and Tina Oberoi for feedback
on an earlier version of this work.

This work is funded in part by EPiQC, an NSF Expedition in
Computing, under award CCF-1730449; in part by STAQ under
award NSF Phy-1818914/232580; in part by NSF award 2340516;
in part by the US Department of Energy Office of Advanced Sci-
entific Computing Research, Accelerated Research for Quantum
Computing Program; and in part by the NSF Quantum Leap Chal-
lenge Institute for Hybrid Quantum Architectures and Networks
(NSF Award 2016136), in part based upon work supported by the
U.S. Department of Energy, Office of Science, National Quantum
Information Science Research Centers, and in part by the Army Re-
search Office under Grant Number W911NF-23-1-0077. This work
was completed in part with resources provided by the University of
Chicago’s Research Computing Center. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein. FTC is the Chief
Scientist for Quantum Software at Infleqtion and an advisor to
Quantum Circuits, Inc.

Data Availability
This manuscript is currently under peer review. We will fully open-
source the code and supporting data when it is published.

References
[1] Google Quantum AI. 2023. Suppressing quantum errors by scaling a surface

code logical qubit. Nature 614, 7949 (2023), 676–681.
[2] Google Quantum AI and Collaborators. 2024. Quantum error correction below

the surface code threshold. arXiv preprint arXiv:2408.13687 (2024).
[3] Narges Alavisamani, Suhas Vittal, Ramin Ayanzadeh, Poulami Das, and Moin-

uddin Qureshi. 2024. Promatch: Extending the Reach of Real-Time Quantum
Error Correction with Adaptive Predecoding. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3. 818–833.

[4] AMD. 2024. AMD Vivado™ Design Suite. https://www.amd.com/en/products/
software/adaptive-socs-and-fpgas/vivado.html

[5] Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding electronic
spectra in quantum circuits with linear T complexity. Physical Review X 8, 4
(2018), 041015.

[6] Ben Barber, Kenton M Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T Campbell,
Neil I Gillespie, Kauser Johar, Ram Rajan, Adam W Richardson, Luka Skoric,
Canberk Topal, Mark L Turner, and Abbas B Ziad. 2023. A real-time, scalable, fast
and highly resource efficient decoder for a quantum computer. arXiv preprint
arXiv:2309.05558 (2023).

[7] Johannes Bausch, Andrew W Senior, Francisco JH Heras, Thomas Edlich, Alex
Davies, Michael Newman, Cody Jones, Kevin Satzinger, Murphy Yuezhen Niu,
Sam Blackwell, George Holland, Dvir Kafri, Juan Atalaya, Craig Gidney, Demis
Hassabis, Sergio Boixo, Hartmut Neve, and Pushmeet Kohli. 2023. Learning to
decode the surface code with a recurrent, transformer-based neural network.
arXiv preprint arXiv:2310.05900 (2023).

[8] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. 2022. Surface code
compilation via edge-disjoint paths. PRX Quantum 3, 2 (2022), 020342.

[9] Michael E Beverland, Prakash Murali, Matthias Troyer, Krysta M Svore, Torsten
Hoefler, Vadym Kliuchnikov, Guang Hao Low, Mathias Soeken, Aarthi Sundaram,
and Alexander Vaschillo. 2022. Assessing requirements to scale to practical
quantum advantage. arXiv preprint arXiv:2211.07629 (2022).

[10] Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum computation with
ideal Clifford gates and noisy ancillas. Physical Review A—Atomic, Molecular, and
Optical Physics 71, 2 (2005), 022316.

[11] Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu,
Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, and Jangwoo Kim.
2022. XQsim: modeling cross-technology control processors for 10+ K qubit
quantum computers. In Proceedings of the 49th Annual International Symposium
on Computer Architecture. 366–382.

[12] Christopher Chamberland, Pavithran Iyer, and David Poulin. 2018. Fault-tolerant
quantum computing in the Pauli or Clifford frame with slow error diagnostics.
Quantum 2 (2018), 43.

[13] Christopher T Chubb and Steven T Flammia. 2021. Statistical mechanical models
for quantum codes with correlated noise. Annales de l’Institut Henri Poincaré D
8, 2 (2021), 269–321.

[14] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S
Bishop, Steven Heidel, Colm A Ryan, Prasahnt Sivarajah, John Smolin, Jay M
Gambetta, and Blake R Johnson. 2022. OpenQASM 3: A broader and deeper
quantum assembly language. ACM Transactions on Quantum Computing 3, 3
(2022), 1–50.

[15] Poulami Das, Aditya Locharla, and Cody Jones. 2022. Lilliput: a lightweight
low-latency lookup-table decoder for near-term quantum error correction. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 541–553.

[16] Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas M Carmean,
Krysta M Svore, Moinuddin Qureshi, and Nicolas Delfosse. 2022. Afs: Accu-
rate, fast, and scalable error-decoding for fault-tolerant quantum computers. In
2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 259–273.

[17] Nicolas Delfosse and Naomi H Nickerson. 2021. Almost-linear time decoding
algorithm for topological codes. Quantum 5 (2021), 595.

[18] Nicolas Delfosse and Gilles Zémor. 2020. Linear-time maximum likelihood
decoding of surface codes over the quantum erasure channel. Physical Review
Research 2, 3 (2020), 033042.

[19] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. 2002. Topological
quantum memory. J. Math. Phys. 43, 9 (2002), 4452–4505.

[20] Cirq Developers. 2024. Cirq. https://doi.org/10.5281/zenodo.11398048
[21] Yongshan Ding and Frederic T Chong. 2020. Quantum computer systems: Re-

search for noisy intermediate-scale quantum computers. Synthesis lectures on
computer architecture 15, 2 (2020), 1–227.

[22] David P DiVincenzo and Panos Aliferis. 2007. Effective fault-tolerant quantum
computation with slowmeasurements. Physical review letters 98, 2 (2007), 020501.

[23] Austin G Fowler and Craig Gidney. 2018. Low overhead quantum computation
using lattice surgery. arXiv preprint arXiv:1808.06709 (2018).

[24] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland.
2012. Surface codes: Towards practical large-scale quantum computation. Physi-
cal Review A—Atomic, Molecular, and Optical Physics 86, 3 (2012), 032324.

[25] Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. 2012. Towards
practical classical processing for the surface code. Physical review letters 108, 18
(2012), 180501.

[26] Craig Gidney. 2021. Stim: a fast stabilizer circuit simulator. Quantum 5 (2021),
497.

[27] Craig Gidney. 2024. Inplace access to the surface code y basis. Quantum 8 (2024),
1310.

[28] Craig Gidney and Martin Ekerå. 2021. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. Quantum 5 (2021), 433.

[29] Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. California
Institute of Technology.

[30] Matthew P Harrigan, Tanuj Khattar, Charles Yuan, Anurudh Peduri, Noureldin
Yosri, Fionn D Malone, Ryan Babbush, and Nicholas C Rubin. 2024. Ex-
pressing and Analyzing Quantum Algorithms with Qualtran. arXiv preprint
arXiv:2409.04643 (2024).

[31] Oscar Higgott. 2022. Pymatching: A python package for decoding quantum
codes with minimum-weight perfect matching. ACM Transactions on Quantum
Computing 3, 3 (2022), 1–16.

[32] Oscar Higgott and Craig Gidney. 2023. Sparse blossom: correcting amillion errors
per core second with minimum-weight matching. arXiv preprint arXiv:2303.15933
(2023).

[33] Dominic Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. 2012.
Surface code quantum computing by lattice surgery. New Journal of Physics 14,
12 (2012), 123011.

[34] Emanuel Knill. 2007. Quantum computing with very noisy devices. arXiv preprint
quant-ph/0410199 (2007).

12

https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://www.amd.com/en/products/software/adaptive-socs-and-fpgas/vivado.html
https://doi.org/10.5281/zenodo.11398048


[35] Tyler LeBlond, Christopher Dean, George Watkins, and Ryan Bennink. 2024.
Realistic Cost to Execute Practical Quantum Circuits using Direct Clifford+ T
Lattice Surgery Compilation. ACM Transactions on Quantum Computing 5, 4
(2024), 1–28.

[36] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2023. Qasmbench:
A low-level quantum benchmark suite for nisq evaluation and simulation. ACM
Transactions on Quantum Computing 4, 2 (2023), 1–26.

[37] Sophia Fuhui Lin, Eric C Peterson, Krishanu Sankar, and Prasahnt Sivarajah.
2024. Spatially parallel decoding for multi-qubit lattice surgery. arXiv preprint
arXiv:2403.01353 (2024).

[38] Daniel Litinski. 2019. A game of surface codes: Large-scale quantum computing
with lattice surgery. Quantum 3 (2019), 128.

[39] Namitha Liyanage, Yue Wu, Alexander Deters, and Lin Zhong. 2023. Scalable
quantum error correction for surface codes using FPGA. In 2023 IEEE International
Conference on Quantum Computing and Engineering (QCE), Vol. 1. IEEE, 916–927.

[40] Satvik Maurya and Swamit Tannu. 2024. Managing Classical Processing Require-
ments for Quantum Error Correction. arXiv preprint arXiv:2406.17995 (2024).

[41] Michael ANielsen and Isaac L Chuang. 2001. Quantum computation and quantum
information. Phys. Today 54, 2 (2001), 60.

[42] Pavel Panteleev and Gleb Kalachev. 2021. Degenerate quantum LDPC codes with
good finite length performance. Quantum 5 (2021), 585.

[43] Nils Quetschlich, Lukas Burgholzer, and Robert Wille. 2023. MQT Bench: Bench-
marking Software and Design Automation Tools for Quantum Computing. Quan-
tum (2023). MQT Bench is available at https://www.cda.cit.tum.de/mqtbench/.

[44] Gokul Subramanian Ravi, Jonathan M Baker, Arash Fayyazi, Sophia Fuhui Lin,
Ali Javadi-Abhari, Massoud Pedram, and Frederic T Chong. 2023. Better than
worst-case decoding for quantum error correction. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2. 88–102.

[45] Ben W Reichardt. 2004. Improved magic states distillation for quantum univer-
sality. arXiv preprint quant-ph/0411036 (2004).

[46] Eleanor G Rieffel and Wolfgang H Polak. 2011. Quantum computing: A gentle
introduction. MIT Press.

[47] Leon Riesebos, Xiang Fu, Savvas Varsamopoulos, CarmenGAlmudever, and Koen
Bertels. 2017. Pauli frames for quantum computer architectures. In Proceedings
of the 54th Annual Design Automation Conference 2017. 1–6.

[48] Neil J Ross and Peter Selinger. 2016. Optimal ancilla-free Clifford+ T approxima-
tion of z-rotations. Quantum Inf. Comput. 16, 11&12 (2016), 901–953.

[49] rroodll, jbelarge, elenewski, and zmorrell. 2024. isi-usc-edu/pyLIQTR: Release
1.1.1. https://doi.org/10.5281/zenodo.10913397

[50] Noah Shutty, Michael Newman, and Benjamin Villalonga. 2024. Efficient near-
optimal decoding of the surface code through ensembling. arXiv preprint
arXiv:2401.12434 (2024).

[51] Luka Skoric, Dan E Browne, Kenton M Barnes, Neil I Gillespie, and Earl T Camp-
bell. 2023. Parallel window decoding enables scalable fault tolerant quantum
computation. Nature Communications 14, 1 (2023), 7040.

[52] Xinyu Tan, Fang Zhang, Rui Chao, Yaoyun Shi, and Jianxin Chen. 2023. Scalable
surface-code decoders with parallelization in time. PRX Quantum 4, 4 (2023),
040344.

[53] Barbara M Terhal. 2015. Quantum error correction for quantum memories.
Reviews of Modern Physics 87, 2 (2015), 307–346.

[54] Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka
Tabuchi. 2021. QECOOL: On-line quantum error correction with a supercon-
ducting decoder for surface code. In 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, 451–456.

[55] Suhas Vittal, Poulami Das, and Moinuddin Qureshi. 2023. Astrea: Accurate
quantum error-decoding via practical minimum-weight perfect-matching. In
Proceedings of the 50th Annual International Symposium on Computer Architecture.
1–16.

[56] Yue Wu and Lin Zhong. 2023. Fusion blossom: Fast mwpm decoders for qec.
In 2023 IEEE International Conference on Quantum Computing and Engineering
(QCE), Vol. 1. IEEE, 928–938.

[57] Jiaxuan Zhang, Zhao-Yun Chen, Jia-Ning Li, Tian-Hao Wei, Huan-Yu Liu, Xi-
Ning Zhuang, Qing-Song Li, Yu-Chun Wu, and Guo-Ping Guo. 2024. Integrating
Window-Based Correlated Decodingwith Constant-Time Logical Gates for Large-
Scale Quantum Computation. arXiv preprint arXiv:2410.16963 (2024).

13

https://www.cda.cit.tum.de/mqtbench/
https://doi.org/10.5281/zenodo.10913397

	Abstract
	1 Introduction
	2 Background
	2.1 Surface Codes
	2.2 Quantum Error Correction Decoding
	2.3 Blocking Operations
	2.4 Decoding Windows
	2.5 Sliding Window Approach
	2.6 Parallel Window Approach

	3 Motivation
	3.1 Decoding Latency
	3.2 Reaction Time

	4 SWIPER: Speculative Window Decoding
	4.1 T Gate Teleportation
	4.2 Predictor Design
	4.3 Classical Resources

	5 Methodology
	5.1 Simulation Software
	5.2 Studying reaction times with SWIPER
	5.3 Benchmark Simulation

	6 Related Work
	7 Conclusion and Future Work
	References

